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METHOD OF CALCULATING TEMPERATUREPROFILES 

IN TWO-PHASE ANNULAR FLOWS 

4 

M. N. Chepurnoi and V. E. Shnaider UDC 536.242:532.529.5 

On the basis of the energy equation, a method of calculating temperature profiles 
in a liquid film and in the surrounding gas flow is given. 

Experimental measurement of local temperatures in the cross section of a thin liquid 
film is technically very difficult, and does not provide the required accuracy. In this con- 
nection, analytical methods of investigation are expedient. 

Temperature profiles in two-phase films are determined by the physical properties of the 
components, the conditions at the inlet, and at the phase boundaries, and also the hydrody- 
namics of the flow, the parameters of which are unknown [I]. Thus, the problem reduces to 
solving the energy equation [2] 

OTt (az ~ a~r) 02Tl (az + air Oazr ) OTt (1) 

with the initial conditions 
T~=Tao(y), T2=T2o(y) ~r x = 0  (2) 
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Fig. I. Temperature dis- 
tribution t(*C) in the 
cross section of a water 
film at different Rey- 
nolds numbers: I) Rex = 

3560; Re2 = 33600; t c = 
86~ 2) 9100, 35340, 92; 
3) 15040, 34860, 98. 

and boundary conditions 

T ~ = T  c(;:) for y = 0 ,  T ~ = T R ( x )  for. Y = R ,  (3 )  

T I :  Z16(x), Z~=Z.2~(x)  :for y = ~ .  (4)  

In Eq. (i), the turbulent thermal diffusivities of the components aZT are known func- 
tions of the coordinates [3]. 

After introducing the notation b = 0.25uzRez, k ffi m/(l- r f = (h- r q = E/h, 
n = bh, m = al + aZT and the substitution 

Z~ = T~ - -  fTc - -  qTt~ (5)  

the equation for the liquid component reduces to the form 

O~ + tun Oe ~ n k O~ ~ = b(TI,~. - -  Tc) k - -  ~ } 0 a t r  ~ _ f OTco_._..~. - -  q 0T1~2,1 (6)  

with the homogeneous boundary and initial conditions 

Zt = Z~o = 7"1o - -  fTco - -  qT~o when 'q = 0. (7) 

The solution of the homogeneous Eq. (6) is found by the Fourier method, according to 
which Zx, = M(~)N(v). The function N(E) is found by the collocation method from the ex- 
pression 

N = 2 c~ (h - -  ~). 
(S) 

If the coefficients c i with n = 3 are determined at fixed collocation points ~i (for 
example, ei = 0.25h, 0.5h, 0.75h), and the following notation is introduced 

(Pu = 2 (h - -  2~)  Pi, (P-,.~ = [2 (h - -  3~)  - -  ~i (2h - -  3~)1P~, 

%~ = e~ [6 (h - -  2ei) - -  ei (3h - -  4 8 i ) ]  Pi, 
t' Oa~r 

) , r  = e ' ] ( h - - e i ) ( m n )  -~ (i, n = l ,  2, 3), P~ .-= (I - -  eO-I  - -  m - ,  

(,p.,~ - r (~,, + r - -  (,a, + r " r 
it is simple to obtain the result 

j = l  

The eigenvalues ~j in Eq. (9) are positive roots (j = 4) of the equation 

r (~s~-- r - -  (~8 + r ,) (%~ C s ~ )  x 
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- (r r162 + r [(r r162 + ~) - 

- -  ((h~ + r ((P2~ - -  ~b2~,~)] = O. (10)  

The coefficients c(~j) are determined from a system of equations formed from Eq. (9) 
and the initial conditions in Eq. (7) with B = 0 

4 2 (II) 
Z~o~ = ' ~  c (~,~) a~, 

i=l 

where Z,ok, akj are, respectively, the functions Z,k and Z*** written for the fixed points 
~k (k = 1-4) when ~ = 0. The system of equations obtained here leads to the result 

c (~) = D~jD[ ~ (12) 

In this expression D, is the determinant of the system in Eq. (ii), while Dij is the deter- 
minant formed from D, by replacing its j-th column by a column composed of Z,ok. 

To find the particular solution of the inhomogeneous Eq. (6) satisfying the zero initial 
and boundary conditions, this solution and the function on the right-hand side of Eq. (6) 
are written in the form of a series expansion in terms of the eigenfunctions. As a result, 
taking account of Eq. (5), the following expression may be obtained for the temperature pro- 
file in the film 

4 (~21--'$1~1])C1 ~ - ~ 3 1 - - ' 3 1 ~ '  ] [c(L;/)+ !Jj(~)d~jexp(-- L~i~), (13) 
r~= ~ -  ~ Vo+~ ~,+ 7~(~-~)[~(~, + ~) + 

h h ~ L '~' + r  
where Jj (n) are the coeff icients  of the series  expansion of the right-hand side of Eq. (6) 
in terms of the elgenfunctions. 

Solving Eq. (I) analogously for the gaseous component, with the boundary conditions in 
Eqs. (2)-(4), the temperature profile in the gas is obtained in the form 

4 

T, = T2a ( I -- e) (I -- h) -I + TR (e -- h) (I -- h)-' + ~P~ (e -- h) (I -- e) • 
i=~ 

• [, :,)c; + 1 ~ ~;, + r ).~j A- (l--s)  (c; + l - -a) j  [c, (L~/) + ! J~(~)d~]exp(-- L2iH). (14) 
t 

The values of all the coefficients in this formula are calculated by the same methods as for 
the corresponding quantities in the llquid component. 

The unknown temperatures of the components at the interface T,~ and Ta~ may be deter- 
mined from the condition of heat-flux continuity 

Q16 (~) = Q,6 (4 + a [TI~ (~)-- T,6 (~)1 (15) 

This condition leads to a flrst-order linear differential equation in terms of the tempera- 
tures to be determined t with a solution of exponential type. The heat fluxes Q,~ and Q2~ 
in the liquid and the gas at the surface of the film are found using Eqs. (13) and (14). 
However, additional information on the heat-transfer coefficient u at the phase interface is 
necessary here; in the general case, a may be a function of the longitudinal coordinate. 
Therefore, it is expedient to wrlte Tl~ in the form T~6 = AZexp(BZn), which leads finally to 
the expression 

Tt6 = Ttaoexp[(inTl~c--lnTl6o)L-l~]. (16) 

Using Eq. (16), i t  is  simple to take the integrals  appearing in Eqs. (13) and (14). 
The solution of Eqs. (13) and (14), taking Eq. (16) into account, is simple to obtain 

on a computer. As an example, calculational temperatu;e profiles in a film of water moving 
together trlth an air flow in a tube of diameter 30 mm corresponding to the experimental con- 
ditions of [4, 5] are shown in Fig. 1. As is evident from Fig. 1, the thickness of the wall 
boundary layer in the film where there is a linear temperature-dlstribution law, is small, 
and decreases with increase in the Reynolds number of the film. With increase in llquld 
flow rate, the turbullzatlon of the film (wave amplitude) increases, which decreases the 
temperature gradient, despite a certain smoothing influence of the gas glow [5]. 
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The results obtained at small gas velocities are in qualitative agreement with the exist- 
ing data for single-phase flow [6i. In a two-phase film flow, the gas component has only 
slight influence on the temperature distribution in the film, but, by decreasing the thick- 
ness of the film, increases the temperature gradient Within it. 

NOTATION 

r, x, radial and axial cylindrical coordinateS; H, length of the section of tube con- 
sidered; R, tube radius; y = R--r~ ~, film thickness; T, temperature; w, velocity; a, thermal 
diffusivity; Rex = 4w~v~1; Re2 = 2w2Rv~X; a* = a~-x; L = HR-X; ~ = xR'1; h = 6R-Z; r = yR'1; 
u = ww -I. Indices: Z = i, liquid; I = 2, gas; c, ~, O, L, R, values at the tube wall, phase 
interface, tube inlet, tube outlet, and flow axis; a bar over a symboldenotes the mean value. 
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APPLICATION OF A CONSERVATIVE DIFFERENCE EQUATION 

TO DETERMINE NONSTATIONARY HEAT FLUXES 

Yu. I. Azima, Yu. I. Belyaev, 
and M. V. Kulakov 

UDC 536.629.7 

The possibility of practical utilization of a conservative differenceequation of 
heat conduction, obtained by an integrointerpolation method, for the automatic 
determination of nonstationary fluxes is analyzed. 

The continuous automatic determination of the heat flux is an important problem in the 
study of nonstationary heat transfer, particularly for the determination of the thermophysi- 
cal  p r o p e r t i e s  (TPP) of  subs tances .  

S u f f i c i e n t l y  complex a lgor i thms tha t  can be r ea l i z ed  only  by using d i g i t a l  computer 
f a c i l i t i e s  are u t i l i z e d  in ex i s t i ng  h igh 'accuracy  methods of  determining the heat  f lux  den- 
s i t y  described in [i, 2]. However, utilization of analog apparatus for th~s purpose is more 
logical from the viewpbint of fast-response and the simplicity of technical realization. Such 
an approach to the determination of the heat flux density, based onthe solution of the in- 
verse heat conduction problem (IHCP) by using analog facilities was apparentlyproposedfirst 
in [3], but it is impossible to acknowledge the method mentioned as correct. 

The simplest method of determining the heat flux, which permits its measurement in ana- 
log form during experiment, is based on the following interpolation of the Fourier equation 
[4]:  

~,I~=L (i) 
q(O, ~) = ~ (x, },x=0 

L 
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